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ABSTRACT
The commercial relationships between Autonomous Systems
(ASes) are of great importance to understand the Internet
reachability and calculate the AS-level paths. Several al-
gorithms have been proposed to solve the AS relationship
inference problem and applied to the data of IPv4 network.
In assuming that the provider is typically larger than its
customers, and the peers usually have comparable sizes, the
suggested algorithms exploit the AS degree information to
infer AS relationships. In analysis of the AS relationships
in the IPv6 network, however, we find that quite a few of
the inference results induced by the present approaches are
different from the inferences in the IPv4 network. With re-
spect to this observation, we analyze the root cause of the
discrepancy and propose an algorithm which combines the
AS hierarchy information, an inherent nature of the Inter-
net structure that we can hardly neglect while analyzing the
AS relationships, with the optimization model of Type-of-
Relationship (ToR) problem to infer the AS relationships
more realistically and stably. In this paper, we first present
a methodology to classify ASes into four hierarchies, and
then use the AS hierarchy information to infer AS relation-
ships. By taking advantage of these partial AS relationship
information, we introduce an improved algorithm to solve
the ToR problem for the remaining AS pairs. The exper-
imental results support our algorithm in two aspects. On
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one hand, the comparison with previous works in the IPv4
network shows that most of our inferring AS relationships
are consistent with their inferences, while more inferences
of our approach are confirmed by the export policies stored
in the Internet Routing Registry (IRR) databases. On the
other hand, 94.82% of our inference relationships in the IPv6
network are consistent with the inferences in the IPv4 net-
work, which illustrates that our algorithm is more stable
than previous algorithms.

Categories and Subject Descriptors
C.2.2 [Network Protocols]: Routing protocols; C.2.5 [Local
and Wide-Area Networks]: Internet

General Terms
Algorithm, Experimentation, Measurement

Keywords
Commercial Relationships, Hierarchies, Probability, IPv6

1. INTRODUCTION
The Internet is composed of thousands of autonomous sys-

tems (ASes). An AS is a connected collection of IP routing
prefixes under the control of one or more network operators
that presents a common, clearly defined routing policy to
the Internet. The ASes exchange reachability information
by using Border Gateway Protocol (BGP) [1]. BGP allows
each AS to choose its own policy on selecting the best routes,
announcing and accepting routes. The commercial relation-
ships between ASes is one of the most important factors
in determining the routing policies and the Internet reach-
ability. It is important and essential for the researchers to
obtain the accurate commercial relationships among ASes
for further analyzing the Internet.

The following is a description of the most common com-
mercial relationships and the export routing policies that



are usually used to implement them [2]:
(1)Provider-to-Customer (p2c): ASc is a customer of ASp

if ASc pays ASp for obtaining connectivity to the rest of the
Internet. The export policies are usually as follows: ASc can
export its internal routes and customer routes to its provider
ASp, but usually does not export its other provider or peer
routes. ASp can export its internal routes and customers
routes as well as its provider and peer routes to ASc.

(2)Sibling-to-Sibling (s2s): Two ASes are siblings if they
have mutual transit agreement, usually for backup. The
export policies are usually as follows: each of the two AS can
export its internal routes, its customers as well its provider
or other routes to the other.

(3)Peer-to-Peer (p2p): Two ASes are peers if they mutu-
ally agree to exchange traffic between their customers, often
free of charge. The export policies are usually as follows:
each of the two AS can export its internal routes and cus-
tomer routes, but usually does not export its provider or
peer routes.

Although several algorithms [3–9] have been proposed in
the literature for inferring AS relationships, we find that the
performances of them are more susceptible to the network
topology variation, which results that the stability of those
algorithms is far from satisfactory. Specifically, when we
compare the inferring AS relationships of the IPv4 network
with the one of the IPv6 network, we observe that quite
a few of the inference results are inconsistent. Some ASes
owned by the well-known global providers are inferred as
customers of the ASes operated by companies that do not
provide connectivity services in the IPv6 network. To solve
this problem, we propose a new AS relationship inference
approach which aims to improve current methods by com-
bining the AS hierarchy information with the optimization
model of the Type-of-Relationship (ToR) [5] problem.

The main idea behind this paper is that the Internet is a
hierarchical structure network. The core backbone network
is composed of the Internet service providers (ISPs) which
are companies that offer Internet connection services to their
customers. The set of ASes near the core of the network are
more likely to be the providers than the other ASes near
the periphery of the network that purchase IP transit from
ISPs to reach some portion of the Internet. Therefore, the
AS hierarchy information plays a crucial role in shaping the
AS relationships. The hierarchy of ASes is subject to the
network characteristics, external connectivity patterns, the
ranges of network services, etc. However it mainly depends
on the types of the organizations that operate the ASes.
For example, the telecommunications companies are usually
the Internet service providers while the university or college
networks are typically customers. Since the AS hierarchy is
closely related to the types of organizations, differing from
AS degrees, it is not affected by the topology graph change.
Hence, instead of solely relying on the AS degree informa-
tion, we also take advantage of the AS hierarchy information
in our inference approach to improve the robustness.

In this paper, we first classify ASes into four hierarchies:
large ISPs, small ISPs, Internet exchange points (IXPs) and
customer ASes, and use the AS hierarchy information to in-
fer most of the AS relationships and determine the structures
of the AS paths. For the remaining AS pairs, we introduce
an improved algorithm based on combinatorial optimization
to compute the types of relationships of them. Furthermore,
we find that the way of assigning weights in MAX2SAT for-

mulation introduced in [8] is inconsistent, which might cause
the problem of the same clause having two different weights.
To solve this problem, we propose a uniform way based on
probability to assign weights. Our algorithm is tested on the
data obtained from Route Views router [10] in both of the
IPv4 and IPv6 networks, and it successfully infers edges in
the AS topology graphs with smaller proportion of invalid
paths. The experimental results show that our algorithm
not only provides an accurate and stable inference result
but also captures the realistic Internet hierarchy.

The rest of this paper is structured as follows. In Sec-
tion 2, we introduce an overview of previous work on AS
relationship inference. Section 3 describes our AS hierarchy
classification methodology. In Section 4, we present our al-
gorithm for inferring AS relationships. Section 5 shows the
results of our inference and the comparison between our al-
gorithm and the existing algorithms. We conclude the paper
in Section 6.

2. RELATED WORK
Gao [3] was the first to study the AS relationships prob-

lem. Assuming that a provider had a larger size than its cus-
tomers and every AS path must comply with the valley-free
model, Gao proposed a heuristic inference algorithm that
identified top-providers and peering links based on AS de-
grees. In the follow-up studies, Xia and Gao [4] presented a
new inference algorithm by using the partial information re-
garding AS relationships. However, this partial information
obtained from Internet Routing Registry IRR [11] databases
is usually considered out-of-date.

In [5], Subramanian et al. formulated AS relationship
inference as an optimization problem, Type-of-Relationship
(ToR) problem. The authors obtained routing data from
various looking glasses called vantage points in [5], and for
each vantage point, they assigned a rank to the ASes and
then assigned relationships by comparing the basis of the
ranks. If two adjacent ASs had different ranks, the one with
lower rank was considered as a customer and the other as a
provider. If the ranks were similar, the ASs were considered
as peers.

Di Battista et al. [6] and Erlebach et al. [7] independently
proposed a similar approach to infer AS relationships. Their
algorithms were based on a reduction of ToR problem to
the well-known Boolean Satisfiability Problem (SAT). The
authors respectively found strict solutions to ToR problem
and made a straightforward observation that peering edges
could not be inferred in the ToR problem formulation. Al-
though the optimization model insured the number of paths
that violate the valley-free path model was minimized, the
inference results were far away from the reality [8].

Cohen and Raz [9] pointed out that the current solutions
to ToR problem failed to capture the hierarchical structure
of the AS graph, which brought the result that the Internet
directed graph imposed by AS relationships contained cy-
cles. To solve this problem, they redefined the formal ToR
problem to the Acyclic Type-of-Relationship(AToR) prob-
lem and proposed an algorithm to solve it while keeping the
directed graph acyclic. The definition of the AToR problem
partially overcame the limitation in the optimization model
by taking hierarchical structure into consideration. How-
ever, the orientations of edges without causing cycles were
not exclusive and might lead to unrealistic AS hierarchies.

Dimitropoulos et al. [8] extended the combinatorial opti-



mization approach by incorporating AS-degree-based infor-
mation into the problem formulation. However, they did
not take AS hierarchy information into account and only
used degree gradient to measure the relationships between
ASes. Furthermore, in their problem formulation, the way
of assigning weights to 1-link clauses and 2-link clauses were
inconsistent, which might cause the problem of the same
clause having two different weights. For example, the two
clauses x1 ∨ x2 (with x2 = 1) and x1 are essentially the
same but they may have two different weights in their prob-
lem formulation. To solve the problem of inconsistency in
weight assignment, we present a new method for assigning
weights based on probability.

The existing AS relationship inference algorithms usually
take a list of AS paths obtained from one or more BGP tables
as input and produce a relationship assignment as output. A
complete AS topology is the precondition of their inference,
because they generally hold the following assumptions: the
AS topology graph obtained from BGP tables is close to
the reality; a provider typically has a larger size than its
customers and the peers usually have comparable sizes; the
AS size is usually proportional to its degree. However, since
the size of IPv6 network is much smaller than the size of
IPv4 network, a lot of the small Internet service providers
have small degrees, which results that the AS degrees in the
topological graph can not fully reflect the AS sizes. In fact,
quite a few of the small ISPs have the degree of 1 or 2, which
is also typical for the customer ASes. The dependence on
the network topology results that the existing solutions fail
to provide a stable inference result in both of the IPv4 and
IPv6 networks. These observation highly motivate our work,
driving us to seek an algorithm which can produce an AS
relationship inference result closer to the reality and is also
robust to the network topology change.

3. THE METHODOLOGY FOR CLASSIFY-
ING AS

In the Internet, the ASes are operated by many different
administrative domains such as Internet service providers
(ISPs), small private companies and universities. The types
of organizations mainly determine the ASes hierarchies. For
example, the telecommunications companies are at a higher
hierarchy level since they are typically the ISPs, while the
university or college networks are at a lower level. Thus,
appropriately classifying the types of the organizations that
own the ASes plays a crucial role in shaping the AS rela-
tionships. In this section, we describe our methodology for
classifying ASes in detail.

3.1 The AS Classes
Previous works on AS classification suggest that the most

common types of ASes include Internet service providers
(ISPs), Internet exchange points (IXPs), Network Informa-
tion Centers (NICs), universities or colleges, research and
education centers, and private companies. In the view of
hierarchy, we divide the ASes into four different classes as
follows:

C1: Large ISPs (LISPs) - they are the collection at the
top of the AS hierarchy. The rest of the ASes rely on one
or more large ISPs to reach part of the Internet directly or
indirectly.

According to the characteristics of the large ISPs, we can

conclude that they are usually the large backbone providers,
well-known telecommunications companies, or tier-1 ISPs
with intercontinental networks. Hence, we construct this
class in a way which differs from the following. We chose
the largest telecommunications companies in various coun-
tries such as Level 3 Communications, Nippon Telegraph
and Telephone Corporation, Tata Communications Limited,
etc. to be large ISPs. Since the large telecommunications
companies are a relatively small and stable group, accurately
finding out the top-level ASes is fairly easy.

C2: Small ISPs (SISPs) - they are the regional or access
providers which offer customers access to the Internet and
related services. C2 includes all the ISPs not in C1.

C3: Internet exchange points (IXPs) - they are physical
infrastructures that allow different ISPs (the ASes in the
first two classes) to exchange traffic between their networks
by means of mutual peering agreements, which allow traffic
to be exchanged without cost [12]. In particular, a large
percentage of ISPs in C2 have a significant number of IXP
connections [13].

C4: Customer ASes (Custs) - they are usually universities,
small private companies or government administrations that
have their own networks but do not provide Internet connec-
tion services. They pay their providers for connecting to the
rest of the Internet.

3.2 The Results of Classification
In the Internet Routing Registry (IRR) [11] databases,

the descriptions or the names of the organizations responsi-
ble for the AS numbers are stored in the descr attribute of
the RPSL [14] aut-num class. The following is the example
of descr attributes of AS1 and AS2 respectively, “LVLT-1
- Level 3 Communications, Inc.” and “DCN-AS - Univer-
sity of Delaware”. Although the descr attribute does not
have a standard representation, each class has some com-
mon words or phrases which represent the characteristics of
organizations in the class. For example, the words “isp”,“ix”
and “univ.” describe the Internet service providers, Inter-
net exchange points and universities respectively. However,
finding those keywords manually is inefficient and incom-
prehensive. To classify the organization records effectively,
we build our classification method by using Support Vector
Machine [15] which has a good performance in text multi-
classification. To reduce the number of features, we prepro-
cess the organization descriptions by removing stop words
such as “the”,“an”,“of” and the words with little meaning
such as numbers and country names.

Our data is collected on 03/14/2009 from the CIDR Re-
port [16] which providers the integrated organization de-
scription records extracted from RIPE NCC, APNIC, ARIN,
etc. IRR databases. After removing records of private
ASes and unregistered ASes, we obtain 46,186 organization
records of ASes in the IPv4 network and 1420 records in
the IPv6 network. Since the same AS numbers in the IPv4
network and the IPv6 network represent the same organi-
zations, we combine the organization records in both IPv4
and IPv6 networks and finally obtain 46,186 records, i.e.
the ASes in the IPv6 network is virtually a subset of the
ASes in the IPv4 network. We construct the C1 class by
adding the records corresponding to the largest telecommu-
nications companies in various countries, and then randomly
select 1000 records in the remaining to be our training set.
In addition, we add 15 well-known IXPs into our training



Table 1: Number and Proportion in Each Class.
C1 C2 C3 C4

AS IPv4 129 15,537 267 30,217
IPv6 36 1568 26 790

% IPv4 0.28% 33.72% 0.58% 65.42%
IPv6 2.54% 40.00% 1.83% 55.63%

Table 2: Distributions of Training Set,Validation Set
and Predicted Result.

C2 C3 C4

Training set 303 16 696
Validation set 299 0 716

Veracious predicted result 251 0 582

set to ensure the IXPs records included. For each record,
we manually determine its correct class by examining its or-
ganization characteristic and searching for references [17–20]
to it. Having the training set prepared, we use LibSVM [21]
a publicly available implementation tool for SVM to realize
our classification. We omit the details of setting the param-
eters of SVM for the sake of brevity.

After applying the classifier obtained from LibSVM to the
remaining records, we get the classification results shown in
Table 1. Among the classified ASes in the IPv4 (IPv6) net-
work, 0.28% (2.54%) are large ISPs, 33.72% (40.0%) are
small ISPs, 0.58% (1.83%) are IXPs, and 65.42% (55.63%)
are customers. Since IPv6 is in its infancy in terms of gen-
eral worldwide development, it is mainly deployed by the
ISPs. So the percentage of ISPs of IPv6 network is relatively
higher. Furthermore, we find that more small ISPs in the
IPv6 network than in the IPv4 network have the AS degree
of 1 or 2, which indicates that, unlike the IPv4 network, the
AS degree in the IPv6 network is not utterly proportional
to the AS size. To validate our result, 1000 records in the
result set are chosen at random and their correct classes
are manually determined. For each record, we compare the
correct class and the class predicted by our classifier. The
result shows that 833 records are classified correctly. To a
certain extent, it demonstrates that our classification is ef-
fective. The distributions of the training set, the validation
set and the predicted result are shown in Table 2.

It is well-known that the Internet AS topology has an
inherent hierarchical structure, arising from the difference
between ASes. The provider AS typically should be at a
higher level than its customer AS in the hierarchy. Based
on this idea, we incorporate the AS classification results into
our AS relationship inference algorithm which is described
in detail in the next section.

4. THE ALGORITHM FOR INFERRING AS
RELATIONSHIPS

Since the AS hierarchy plays a vita role in our inference
algorithm, prior to presenting the relationship inference al-
gorithm, we explain how the AS hierarchy information is
used to infer the AS relationships and determine the struc-
ture of the AS paths. We denote an edge from an AS at
a lower hierarchy level to an AS at a higher hierarchy level
with a -1, the edge in a reverse direction with a 1, and an
edge between the ASes in the same hierarchy level with a 0.

(1) In filtering the abnormal AS paths, we use the AS

V1

Cust

V4

LISP

V3

SISP

V2

SISP

V5

SISP

V6

Cust

Figure 1: A path contains six vertices with their
corresponding hierarchies (the direction is from cus-
tomer to provider).

hierarchy information to detect whether a path violates the
valley-free model. In a path, if an AS at a lower level appears
between the ASes at a higher level, then the path should
be considered as having violated the hierarchical structure.
Namely, there is at least one edge labeled with 1 appears
before an edge labeled with -1 in a path. We carefully ex-
amine the AS pairs which lead to the abnormities to detect
whether they are caused by false classification. Among those
AS pairs, there are 6.70% of them raised by misclassification,
which indicates that the AS hierarchy introduces minimal
inference mistakes. We filter the remaining abnormal paths,
because they are most likely to be caused by BGP miscon-
figurations or special routing policies, filtering those paths
helps to mitigate the impact on inference results.

(2) In inferring the p2c or c2p relationships, we identify
the relationships of edges by comparing the hierarchies of
the adjacent ASs. For example, consider the path contains
6 ASes with their hierarchies depicted in Fig. 1. The corre-
sponding edges have a label set {-1, 0, -1, 1, 1} from left to
right. We find out the edges which correspond to the last -1
and the first 1 appearing in the path, and refer these edges
as lastC2P and fisrstP2C respectively. Assuming the path is
valid, we can conclude that the edges before lastC2P should
be labeled with -1 and the edges after fisrstP2C should be
labeled with 1. Specifically, in Fig. 1, since the edge from
ASv2 to ASv3 appears before the edge labeled with -1 (from
ASv3 to ASv4), the relationship of it is inferred to be in the
c2p type. If the edges between the adjacent ASes cannot be
inferred in this stage, we will initially orient them along the
node degree gradient and utilize the algorithm described in
Section 4.2 to infer their relationships.

(3) In inferring the p2p relationships, since the adjacent
ASes in the same hierarchy level and the ASes participating
at the IXPs are most likely to have the p2p relationships,
we treat them as peer candidates and use the algorithm de-
scribed in Section 4.3 to infer the p2p relationships within
the candidate set.

4.1 Inferring the S2S Relationships
Since s2s relationships exist between the adjacent ASes

belonging to the same organization, a natural approach to
infer s2s relationships is to divide ASes into different groups
according to their registered organizations, and then exam-
ine whether the adjacent ASes of each AS path are in a same
group. Specifically, we utilize the AS organization informa-
tion stored in IRR [11] databases to create groups of sibling
ASes similar to the way described in [8]. The strength of
this method for identifying s2s relationships relies on that it
takes advantage of the AS organization information which
is believed to be accurate and reliable.

4.2 Inferring the P2C Relationships
The problem of inferring p2c relationships among ASes

can be formulated as the Type-of-Relationship (ToR) prob-
lem [5]: given a set of AS paths P and an undirected graph
G obtained from P, orient all edges in G so that a maxi-



Table 3: Mapping between AS Edges and 2SAT
Clauses [6].

A directed path 2SAT clause

x1 ∨ x2

x1 ∨ x2

x1 ∨ x2

x1 ∨ x2

mum number of paths are valid. Battista et al. [6] proposed
an approximation algorithm to solve the ToR problem by
reducing it to a SAT formula (The mapping between AS
edges and 2SAT clauses is shown in Table 3). Dimitropoulos
et al. [8] showed that the optimal solution of ToR problem
might lead to unrealistic AS relationship inferences, and pro-
posed a method to reformulate the ToR problem as a multi-
objective optimization problem (MAX2SAT) by introducing
AS degree information.

However, there exists a deficiency with respect to the
weight assignment in the problem formulation of the method
in [8]. Specifically, the 1-link clauses are weighted by a func-
tion of the node degree gradient f(d−, d+), while the weights
of 2-link clauses are equal. The difference between 2-link
clauses is not reflected by their weights. The way of as-
signing weights to 1-link clauses and 2-link are inconsistent,
which may cause the problem of the same clause having
two different weights. For example, the two clauses x1 ∨ x2

(with x2 = 1) and x1 are essentially the same but they may
have two different weights in the problem formulation. Fur-
thermore, since the value of α for controlling the tradeoff
between 1-link clauses and 2-link clauses has an important
impact on the inference results, we must fix its value appro-
priately. However, it is difficult to find the value of α that
fits the dynamically changing topology data, unless we know
the realistic AS relationships in advance. The necessity of
fixing the value of α inevitably limits the universality of the
algorithm. Therefore we propose a new way which is based
on probability to assign weights to 1-link and 2-link clauses,
so that when one of the two variables in a 2-link clause has
been identified, i.e. the relationship of the corresponding
edge has been classified by comparing the hierarchies of the
adjacent ASs, the 2-link clause would be converted into a
1-link clause while their weights keep consistent according
to their probability (detailed in Theorem 1).

Now we use a path which includes 5 ASes as an example
to explain our weight assignment method (For brevity, we
omit the details about processes of solving the MAX2SAT
problem by using semidefinite programming relaxation). If
the ASes with their types in the path accord with Fig. 2(a),
by comparing the hierarchies of the adjacent ASs, we can de-
terministically classify the relationships between those ASes
(the direction is from customer to provider). If there are
some ASes in the same hierarchy level, for example ASv2,
ASv3 and ASv4 in Fig. 2(b), and we can only identify
a portion of relationships within the ASes, i.e. ASv1 and
ASv2, ASv4 and ASv5. Since the known relationships are
not cared in the following procedure, we remove the corre-
sponding edges and simplify the path into the one depicted

V1

Cust

V4

SISP

V3

LISP

V2

SISP

V5

Cust

V1

Cust

V4

SISP

V3

SISP

V2

SISP

V5

Cust

( )a

( )b

V4: 8

SISP

V3: 5

SISP

V2: 3

SISP

( )c

Figure 2: A path contains five ASes with their types
and degrees.

( )a

( )b

( )c

Figure 3: Examples of orientations which make the
path in Fig. 2(b) valid.

in Fig. 2(c). According to Gao’s valid AS path model [3], if
the path depicted in Fig. 2(b) is a valid path, the directions
of edges in Fig. 2(c) can only be one of the 3 cases shown
in Fig. 3.

Given the following definitions:
Deg(vi) denotes the degree of ASvi.
TotalDeg denotes the sum of the degrees of ASes in a path.

Pr (vi)=
Deg(vi)

TotalDeg
denotes the probability of ASvi being

the top-provider in a path.
Pr (vi, vj) denotes the probability of ASvi being the cus-

tomer of ASvj .
Assuming that the degrees of ASv2, ASv3 and ASv4 are

3, 5 and 8 respectively, the probability of case (a), meaning
that the ASv2 is the top-provider, is:

Pr (v2) =
Deg(v2)

TotalDeg
=

3

16

Similarly, the probabilities of case (b) and (c) are:

Pr (v3) =
Deg(v3)

TotalDeg
=

5

16
, Pr (v4) =

Deg(v4)

TotalDeg
=

8

16

Since the degree of ASv4 is largest among the ASes, case
(c) in Fig. 3 is more likely to reflect the realistic relationships
of the ASes, meaning that ASv4 shall be the top-provider
on this path. Therefore the relationship between ASv2 and
ASv3 and the relationship between ASv3 and ASv4 shall be
in c2p types. Case (b) and case (c) include the instance of
the edge from ASv2 to ASv3, so the probability of the edge
from ASv2 to ASv3 is:

Pr (v2, v3) = Pr (v3) + Pr (v4) =
13

16

Similarly, the probability of the edge from ASv3 to ASv4

is:



Figure 4: An example of a 2-link clause.

Pr (v3, v4) = Pr (v4) =
8

16

We map the AS edges to the 2SAT clauses according to
the mapping rules in Table 3. The description of the 2SAT
problem of case (c) in Fig. 3 is (x1 ∨ x2).

We define that the probability of clause (xk ∨ xl) is:

Pr (xk ∨ xl) = 1− Pr (xk ∨ xl) = 1− Pr (xk ∧ xl)
= 1− [1− Pr (xk)][1− Pr (xl)]

And the weight of the clause (x1 ∨ x2) is:

W(x1 ∨ x2) = Pr (x1 ∨ x2) = 1− [1− Pr (x1)][1− Pr (x2)]
= 1− [1− Pr (v2, v3)][1− Pr (v3, v4)]

Our probability-based method solves the problem of in-
consistency of assigning weights to 1-link clauses and 2-link
clauses of the problem formulation in [8]. The theorem and
its proof are presented as below.

Theorem 1. For a 2-link clause l1 ∨ l2 (where l1 and l2
are either variables or the negation of variables). If l2 has
been identified to be false, then the weight of the 2-link clause
is equal to the weight of the 1-link clause l1.

Proof. Without loss of generality, we will only consider
the case shown in Fig. 4. The other cases can be proved
similarly.

The 2SAT formulation of the case in Fig. 4 can be de-
scribed as (x1 ∨ x2). According to the probability-based
weight assignment method, the weight of the clause is:

W(x1 ∨ x2) = Pr (x1 ∨ x2)

If the direction between v2 and v3 has been identified as
from v2 to v3, then Pr (x2)=1. Putting the value of Pr (x2)
into the expression above, we have

W(x1 ∨ x2) = Pr (x1 ∨ x2) = Pr (x1 ∨ 0)
=Pr (x1) = W(x1 ∨ x1)

So we finish the proof of Theorem 1.

In summary, our inference algorithm contains two steps.
First, it exploits the AS hierarchy information to determine
the structure of the AS paths, which avoids the ISPs being
inferred as customers of non-ISPs. In the second step, after
removing the deterministic relationships, it reduces the ToR
problem to the MAX2SAT problem and uses a probability-
based method to assign weights. Unlike the previous work,
our algorithm takes both AS degrees and AS hierarchy con-
strains into consideration and does not contain any tuning
parameters, which makes it more competent and universal.

4.3 Inferring the P2P relationships
A solution of the algorithm described in the previous sec-

tions determines p2c relationships between the ASes. Since
some of the ASes may have p2p relationships, we need to dis-
cover those peering ASes, basing on the obtained solution.

With respect to the valley-free model, a valid path can have
only one peer link adjacent to the top-provider. Hence, a
natural way to identify the peer link is to construct the peer
candidates, and then examine if the corresponding p2c edge
can be converted to p2p edge without causing invalid path
and without violating the hierarchical structure of the AS
path. Specially, since the adjacent ASes in the same hierar-
chy level and the ASes participating at the IXPs are most
likely to have the p2p relationships, we treat them as our
peer candidates, and then convert the edges within the can-
didate set one by one at the premise of keeping the number
of invalid paths minimized.

5. EXPERIMENTAL RESULTS

5.1 Data sources and inference results
In our experiment, we use the real data from Route Views

[10] project to examine our inference algorithm. We collect
the data from 03/14/2009 to 03/21/2009. After removing
AS prepending and AS sets, we obtain 29,354 (1327) ASes,
14,835,569 (14,643) AS paths and 68,912 (4718) links of the
IPv4 (IPv6) network.

Before starting the relationship inference, we identify the
s2s links and remove them from the AS topology graph.
Using the AS hierarchy information, we map the ASes into
their types and obtain partial AS relationships by comparing
the hierarchies of the adjacent ASes. Basing on the partial
relationships, we examine the valley-free property for each
AS path and remove the abnormal paths. For the remain-
ing AS links, we map them to a set of clauses by using the
reduction of ToR to MAX2SAT, and then assign weights
to the clauses in a probability-based way. To obtain bet-
ter approximation ratio, we use the SDP based approxima-
tion algorithm developed by Lewin et al. [22] to solve the
MAX2SAT problem and the SDP solver SDPT3v4.0 [23] to
solve the semidefinite programs. We build the peer candi-
date set upon the p2c inference results. After examining the
peer candidate set, we identify the links in the type of p2p
relationship.

Our inference result is shown in Table 4. Within 68,912
(4718) edges in the IPv4 (IPv6) network, there are 319 (74)
s2s edges, 62,484 (4066) p2c edges and 7487 (578) p2p edges.
Among the p2c edges in the IPv4 (IPv6) network, 61.95%
(69.04%) of them are inferred by comparing their hierar-
chies. The inference result matches the previous work, il-
lustrating that the p2c relationship accounts for most of the
AS relationships.

Table 4: Results of Our AS Relationship Inference.
Edges S2S P2C P2P

IPv4 68,912 319 62,484 38709 7487
0.46% 90.67% 61.95% 10.86%

IPv6 4718 74 4066 2807 578
1.57% 86.18% 69.04% 12.25%

5.2 Validation of Our Method
Since most of the inferring p2c relationships are based

on the AS hierarchy, we evaluate the effect that the AS hi-
erarchy has on the inference results by comparing the algo-
rithm incorporated with the AS hierarchy information to the



Table 5: Comparison of the Inference Algorithms (19,497 (1518) common AS pairs exist in both IRR databases
and BGP tables. S2S: 1.09%(1.45%); P2C: 55.32%(61.53%); P2P: 43.59%(37.02%)).

IPv4 Mismatch IPv6 Mismatch Inconsistency
Gao S2S 896 69 (32.55%) 182 11 (50.00%) 36 (19.78%)

P2C 64,364 498 (4.61%) 4279 72 (7.71%) 404 (9.44%)
P2P 3652 1339 (12.41%) 257 64 (11.39%) 94 (36.58%)

DPP P2C 68,912 377 (3.49%) 4718 52 (5.57%) 419 (8.88%)
CAIDA S2S 211 26 (12.26%) 74 4 (18.18%) 5 (6.76%)

P2C 63,250 367 (3.40%) 4152 82 (8.78%) 497 (11.97%)
P2P 7066 778(9.15%) 492 79 (14.06%) 102 (20.73%)

AToR S2S 489 58 (27.36%) 57 9 (40.91%) 28 (49.12%)
P2C 61,430 298 (2.76%) 4139 109 (11.67%) 498 (12.03%)
P2P 6993 849 (9.99%) 522 85 (15.12%) 70 (13.41%)

HPB S2S 319 23 (7.21%) 74 11 (14.86%) 0 (0.00%)
P2C 62,484 182 (1.68%) 4066 21 (2.25%) 210 (5.16%)
P2P 7487 674 (7.93%) 578 32 (5.70%) 34 (5.89%)

PB S2S 319 23 (10.83%) 74 4 (18.18%) 0 (0.00%)
P2C 63,009 219 (2.03%) 3912 67 (7.17%) 349 (8.92%)
P2P 5584 727 (8.55%) 732 59 (10.50%) 76 (10.38%)

original algorithm. Specially, without invoking AS hierar-
chy information in the original algorithm, we determine the
top-provider as the highest degree AS in the path and only
use the reduction of ToR to MAX2SAT and give weights
to the clauses in a probability-based way detailed in Sec-
tion 4.2. We refer these two algorithms as HPB (Hierarchy
and Probability-Based) and PB (Probability-Based) respec-
tively. The two rows named HPB and PB in Table 5 provide
the results of evaluating. It shows that the effect of incor-
porating AS hierarchy information into the algorithm is less
on the IPv4 network than on the IPv6 network. Namely,
the number of inconsistent relationships is relatively smaller
in the result of HPB algorithm (If the relationship between
an AS pair in the IPv4 network is different from the one in
the IPv6 network, it means that there is an inconsistency).
By analyzing the inconsistency in the other four algorithms,
we find that the number of inconsistent relationships is also
higher in these algorithms. This observation illustrates that
the AS hierarchy information needs to be considered, espe-
cially in the IPv6 network.

Validating the inference results is a challenging task ham-
pered by the fact that it is difficult to collect the actual AS
relationships which are considered sensitive business infor-
mation by ISPs. However, we can obtain the partial AS
relationships by analyzing the routing policies registered in
IRR [11] databases, because AS relationship is one of the
most important factors in determining routing policy. In
our experiment, we use the AS relationships induced from
IRR databases to evaluate our algorithm and the present al-
gorithms. The comparison results are shown in Table 5 (Gao
refers to the algorithm presented in [3], DPP refers to the
algorithm presented in [5], CAIDA refers to the algorithm
presented in [8] and AToR refers to the algorithm presented
in [9]). The comparing algorithms are tested on the same AS
path set, except CAIDA of the IPv4 network, since it has
published the results of the inference on the website [24].
We do not compare with the PTE algorithm in [4] since its
inference is based almost completely on the IRR database.

Based on the methods introduced in [4] and [25], we pro-
cess the data in the IRR databases on 03/14/2009, and ob-
tain the relationships of 45,220 (2761) AS pairs in the IPv4

(IPv6) network. Within these AS relationships, there is a
high percentage of p2p links, which matches the observa-
tion done in [8], indicating that to capture a veracious of
p2p relationships, it is more necessary than exploiting the
inference algorithm for us to take advantage of the different
data sources, i.e. the IRR databases, because most of the
missing links in BGP tables are in the p2p types. The num-
ber of the common AS pairs exist in both IRR databases
and BGP tables is 19,497 (1518). Among these AS pairs,
there are 55.32% (61.53%) of them have the type of p2c
relationships, 43.59% (37.02%) are in the p2p relationships
and 1.09% (1.45%) are s2s types. Although the AToR al-
gorithm infers the p2p relationships in the way similar to
ours, it does not use filtering but examined all the paths
to check whether the conversion of p2c links to p2p links
cause invalid paths, which results in an exceeding long run-
time if the set of input paths is large. Since the DPP algo-
rithm does not concern the s2s and p2p relationships, the
corresponding columns are omitted. After comparing the
relationships inferred from the two d data sources, we find
that the number of mismatching relationships is relatively
smaller in HPB (If an AS relationship inferred from the algo-
rithm is different from the one induced from IRR databases,
it means that there is a mismatch), which indicates that the
AS relationships inferred by HPB has greater consistency
with the export policies stored in IRR databases than the
other algorithms.

Since the records in IRR databases are not necessarily up-
to-date and the intersection of the AS links in both of the
IRR databases and the BGP tables is relatively small, we
perform the comparison experiment between our algorithm
and the other suggested algorithms to get a better sense of
the distribution of the inference relationships in both IPv4
and IPv6 networks. Table 6 shows the number of consis-
tent relationships for each type between our algorithm and
the reference algorithms. It shows that in the IPv4 network,
there is a high agreement on p2c links between HPB and the
other five algorithms. Since HBP and CAIDA adopt a sim-
ilar method to identify the s2s links, the consistence of this
type between them is much higher, while the consistence is
lower when comparing with Gao and AToR. With respect



Table 6: Consistent results of Our Inference Algo-
rithm and Other Algorithms.

HPB IPv4 IPv6
S2S P2C P2P S2S P2C P2P
319 62,484 7487 74 4066 578

Gao 55 60,154 2841 33 2981 167
PTE 271 62,008 4885 56 3644 397
DPP – 59,986 – – 3267 –

CAIDA 211 61,118 3767 74 3455 223
AToR 69 60,169 3321 41 3255 279

to the p2p links, the number of p2p links inferred by HPB
and PTE is relatively similar while some conflicts emerge in
HBP and Gao. However, there is distinct agreement among
the algorithms in the IPv6 network. Even for the p2c type,
quite a few AS pairs are inferred in opposite relationships
when comparing HBP with other algorithms, except PTE.
We find that most of the small ISPs have the AS degree of
1 or 2, which causes them to be inferred as the customers
of the non-ISPs with relatively larger degrees. Since the
paths containing those AS pairs usually appear only a few
times in the IPv6 network, it is hard to filter them by ex-
amining the valley-free property and controlling the invalid
paths number. This observation supports our point of view
that the AS hierarchy is an inherent nature of the Internet
structure that we can hardly neglect while analyzing the AS
relationships.

6. CONCLUSION
In this paper, we study the AS relationship inference prob-

lem. We observe that the current algorithms are not very
robust when they are applied to different networks. After
analyzing the root cause of this limitation, we propose an al-
gorithm which combines the AS hierarchy information with
the optimization model of the ToR problem to infer the AS
relationships. In addition, our probability-based weight as-
signment method solve the problem of inconsistency occur-
ring in previous work. The experimental results show that
our algorithm not only achieves good inferring results in
the IPv4 network, but also keeps a more stable performance
than the present approaches in the IPv6 network.
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